skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srinivas, Vaidehi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop new techniques for proving lower bounds on the least singular value of random matrices with limited randomness. The matrices we consider have entries that are given by polynomials of a few underlying base random variables. This setting captures a core technical challenge for obtaining smoothed analysis guarantees in many algorithmic settings. Least singular value bounds often involve showing strong anti-concentration inequalities that are intricate and much less understood compared to concentration (or large deviation) bounds. First, we introduce a general technique for proving anti-concentration that uses well-conditionedness properties of the Jacobian of a polynomial map, and show how to combine this with a hierarchical net argument to prove least singular value bounds. Our second tool is a new statement about least singular values to reason about higher-order lifts of smoothed matrices and the action of linear operators on them. Apart from getting simpler proofs of existing smoothed analysis results, we use these tools to now handle more general families of random matrices. This allows us to produce smoothed analysis guarantees in several previously open settings. These new settings include smoothed analysis guarantees for power sum decompositions and certifying robust entanglement of subspaces, where prior work could only establish least singular value bounds for fully random instances or only show non-robust genericity guarantees. 
    more » « less
  2. Free, publicly-accessible full text available January 1, 2026